Convergence to the Perron Projection

Michael Ragone (thanks Jake lol)

Summer 2020

Lemma 0.1. Recall: Linear algebra (Dimension of eigenspaces)

For every eigenvalue λ of a matrix A, the adjoint A^* has $\overline{\lambda}$ as an eigenvalue, and each corresponding eigenspace has the same dimension.

Proof. A matrix and its adjoint have the same rank, by e.g. Jordan Canonical Form or by this cute proof. Then, by rank-nullity theorem,

$$\dim \operatorname{ran} (A - \lambda \mathbb{1}) = \dim \operatorname{ran} (A^* - \overline{\lambda} \mathbb{1}) \Leftrightarrow \dim \ker (A - \lambda \mathbb{1}) = \dim \ker (A^* - \overline{\lambda} \mathbb{1})$$

Theorem 0.2. Convergence to Perron Projection

Let $\mathbb{E}: \mathbb{C}^k \to \mathbb{C}^k$ be a linear operator with spectral radius $r(E) \leq 1$ and with 1 as a simple eigenvalue. Further, assume that \mathbb{E} has trivial peripheral spectrum, i.e. that there are no other eigenvalues on the unit circle. Then there exists C > 0 and $\lambda \in (0,1)$ such that the following inequality holds:

$$\|\mathbb{E}^n - |v\rangle\langle w|\| \le C\lambda^n$$

where $\|\cdot\|$ is operator norm, $|v\rangle$ and $|w\rangle$ are right and left eigenvectors of \mathbb{E} of eigenvalue 1, normalized so that $\langle w, v \rangle = 1$.

Proof. We already know that since \mathbb{E} has 1 as a simple eigenvalue, the left and right eigenspaces are spanned by eigenvectors of eigenvalue 1 by Lemma (0.1). So in equations,

$$\mathbb{E}|v\rangle = |v\rangle, \qquad \langle w|\mathbb{E} = \langle w|$$

Notice that we necessarily have $\langle w, v \rangle \neq 0$, and we can choose these vectors such that $\langle w, v \rangle = 1$. This is because we can write \mathbb{E} in Jordan canonical form $\mathbb{E} = SJS^{-1}$ where, by simplicity of the eigenvalue 1, J can be chosen to have the block diagonal form:

$$J = \begin{bmatrix} 1 & 0 \\ 0 & * \end{bmatrix}$$

So, choosing the left and right eigenvectors $\langle w|=\langle e_1|S \text{ and } |v\rangle=S^{-1}|e_1\rangle$, where $e_1=[1,0,\ldots,0]^T$, we have

$$\langle w, v \rangle = \langle w | \mathbb{E} | v \rangle = \langle e_1 | S(S^{-1}JS)S^{-1} | e_1 \rangle = \langle e_1 | J | e_1 \rangle = 1$$

This then guarantees that the map $|v\rangle\langle w|$ is a rank-1 projection onto the 1-dimensional eigenspace for eigenvalue 1:

$$(|v\rangle\langle w|)^2 = |v\rangle\langle w, v\rangle\langle w| = |v\rangle\langle w|$$

and it further commutes with \mathbb{E} and enjoys the following relation, using our eigenvector equations:

$$|v\rangle\langle w|\mathbb{E} = |v\rangle\langle w| = \mathbb{E}|v\rangle\langle w|$$

Let us call this projection $P := |v\rangle\langle w|$ and rewrite the above:

$$P\mathbb{E} = P = \mathbb{E}P \tag{0.1}$$

This allows us to easily take powers:

$$(\mathbb{E} - P)^n = \mathbb{E}^n - P$$

Now, we will show that the spectral radius of the operator $r(\mathbb{E} - P) < 1$. We will then provide two different proofs (in the claims) that both yield the desired inequality from this fact. Observe that since P, \mathbb{E} commute, we can block diagonalize, and using (0.1) multiple times, we have:

$$\mathbb{E} = \mathbb{E}P + \mathbb{E}(\mathbb{1} - P)$$
$$= P\mathbb{E}P + (\mathbb{1} - P)\mathbb{E}(\mathbb{1} - P)$$
$$= P + (\mathbb{1} - P)\mathbb{E}(\mathbb{1} - P)$$

and so

$$\mathbb{E}(\mathbb{1}-P) = \mathbb{E}-P = (\mathbb{1}-P)\mathbb{E}(\mathbb{1}-P)$$

Suppose λ is an eigenvalue of $\mathbb{E}(\mathbb{1}-P)$ with eigenvector x, so

$$\mathbb{E}(\mathbb{1} - P)x = \lambda x, \qquad x \neq 0$$

Applying (1 - P) to both sides and commuting things,

$$(1 - P)\mathbb{E}(1 - P)x = \mathbb{E}(1 - P)x = \lambda(1 - P)x$$

So (1-P)x is an eigenvector of \mathbb{E} of eigenvalue λ .

If $(1-P)x \neq 0$, then since P is a rank 1 projection onto the 1-eigenspace span($|v\rangle$) of \mathbb{E} , we have that $(1-P)x \notin \text{span}(|v\rangle)$. Since \mathbb{E} has trivial peripheral spectrum, $|\lambda| < 1$.

If (1-P)x=0, then x=Px, so $x\in \mathrm{span}(|v\rangle)$. By projection, $\lambda=0$.

Thus, $r(\mathbb{E} - P) < 1$, as desired.

<u>Claim:</u> Let \mathbb{E} and P be as above. Then there exists C > 0 and $\lambda \in (0,1)$ such that the following inequality holds:

$$\|\mathbb{E}^n - P\| \le C\lambda^n$$

<u>Proof:</u> (Proof using Gelfand's formula) Pick $1 > \lambda > r(\mathbb{E} - P)$. Gelfand's formula gives us that

$$\lambda > r(\mathbb{E} - P)$$

$$= \lim_{n \to \infty} \| (\mathbb{E} - P)^n \|^{1/n}$$

$$(0.1) = \lim_{n \to \infty} \| \mathbb{E}^n - P \|^{1/n}$$

So, picking a sufficiently large C > 0 to control the first few terms of the sequence, we have the following desired inequality for all n:

$$\|\mathbb{E}^n - P\| < C\lambda^n$$

<u>Proof:</u> (Proof using Jordan Canonical Form) Note the following formula for the n^{th} powers of a $\ell \times \ell$ Jordan

block with eigenvalue α :

Since $r(\mathbb{E}-P)<1$, the Jordan Canonical Form of $\mathbb{E}-P$ has that every Jordan block has eigenvalue $\alpha<1$. Note that the largest binomial term $\binom{n}{l-1}$ grows at a polynomial rate in n, $O(n^{l-1})$, so the growth in operator norm of the matrix above (after factoring out α^n is at most polynomial in n. Thus, using (0.1), we can choose a constant C>0 and a $1>\lambda>r(\mathbb{E}-P)$ such that

$$\|\mathbb{E}^{n} - P\| = \|(\mathbb{E} - P)^{n}\|$$

$$= \left\| \sum_{\alpha \in \sigma(\mathbb{E} - P)} J(\alpha)^{n} \right\|$$

$$\leq \sum_{\alpha \in \sigma(\mathbb{E} - P)} \|J(\alpha)^{n}\|$$

$$\leq C\lambda^{n}$$