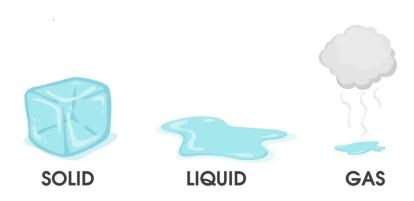
# The Curious Symmetry Breaking of O(n) Quantum Spin Chains

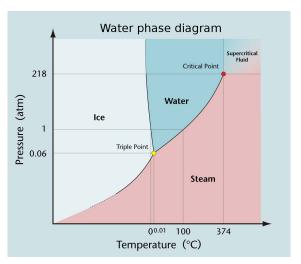
#### Michael Ragone

...or, what I did during grad school.

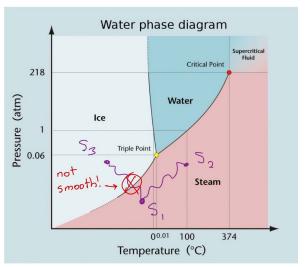
March 12, 2024

#### Phases of matter





What is a phase?



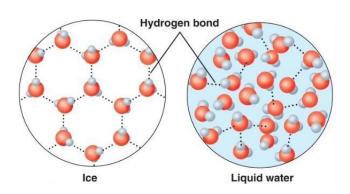
"Two systems are in the same phase if we can find a smooth path connecting them."

#### Phases and invariants

- How do we distinguish phases?
- One approach: find invariants preserved along paths.
- The "does it have a well-defined volume?" invariant.
  - Water and ice have a well-defined volume.
  - Steam does not.
- This cannot distinguish water from ice.
- By finding more invariants, we can distinguish more phases!

#### Phases and invariants

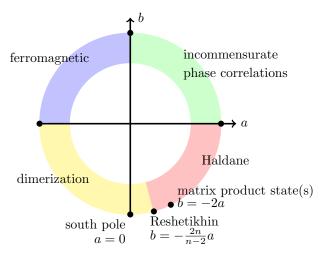
Rich source of invariants: symmetry properties.



Time-averaged density  $\rho(x), x \in \mathbb{R}^3$ :

- Liquid:  $\rho(x) = \rho(x+v), v \in \mathbb{R}^3$ . Continuous symmetry.
- Not so for ice! Only has discrete lattice symmetry.

### Another phase diagram



Our goal: better understand (and prove the distinctness of) the "Haldane" and "dimerized" phases.

### Classical analogy for setup

Suppose we have a particle which moves on the space  $[a, b] \subseteq \mathbb{R}$ . We want to describe a collection of experiments which measures its position.

- Observable: Position function A(x) = x.
  - This lives in an algebra, 1 say  $\mathcal{A} = C([a, b])$ , with some topological structure, say  $\|\cdot\|_{\infty}$ .
- State:  $\omega$  is integration against a probability density  $\rho(x)dx$ , representing the position of a particle taken over many experiments.
- The expected position of the distribution  $\rho(x)dx$  is

$$\omega(A) = \int_{[a,b]} x \, \rho(x) dx.$$

Experiment = pairing of observable  $A \in \mathcal{A}$  and state  $\omega \in \mathcal{A}^*$ .

<sup>&</sup>lt;sup>1</sup>Vector space + multiplication

# Finite Quantum spin chains

- Work on finite chains  $[a, b] \subseteq \mathbb{Z}$ .
- Each site  $x \in \mathbb{Z}$  has a Hilbert space  $\mathcal{H}_x = \mathbb{C}^n$ . Combining sites is tensor product:

$$\mathcal{H}_{[a,b]} = \mathcal{H}_a \otimes \mathcal{H}_{a+1} \otimes \cdots \otimes \mathcal{H}_b.$$

Bases are easy to find. For example, if  $\mathcal{H}_1$  has orthonormal basis

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, then  $\mathcal{H}_1 \otimes \mathcal{H}_2$  has orthonormal basis

$$|00\rangle$$
,  $|01\rangle$ ,  $|10\rangle$ ,  $|11\rangle$ ,

where  $|ij\rangle = |i\rangle \otimes |j\rangle$ .

• So,  $\dim(\mathcal{H}_{[1,\ell]}) = n^{\ell}$ .

# Finite Quantum spin chains

- Observables:  $\mathcal{A}_{[a,b]} = \mathcal{B}(\mathcal{H}_{[a,b]})$  with operator norm  $\|\cdot\|_{\infty}$ .
  - $\mathcal{A}_{[1,\ell]}$  is just  $n^{\ell} \times n^{\ell}$  complex matrices  $M_{n^{\ell}}(\mathbb{C})$ .
  - Note: this is a noncommutative algebra!
- States: positive, normalized linear functionals  $\omega: \mathcal{A}_{[a,b]} \to \mathbb{C}$ .
  - Since dim( $\mathcal{H}_{[a,b]}$ ) finite, Riesz representation theorem applied to the inner product  $\langle A, B \rangle = \text{Tr} A^* B$  on  $\mathcal{A}_{[a,b]}$  says there is a  $\rho \in \mathcal{A}_{[a,b]}$  such that

$$\omega(A) = \text{Tr}\rho A.$$

- $\rho = \rho^* \ge 0$  is positive  $\rho \ge 0$ , and  $\rho$  is normalized  $\text{Tr}\rho = 1$ . In this sense  $\rho$  is a quantum analogue of a probability density function.
- Pure states: density matrices are rank-1 orthogonal projections  $\rho = |\psi\rangle\langle\psi|$  onto the subspace spanned by  $|\psi\rangle \in \mathcal{H}_{[a,b]}$ .

# Quantum spin chain setting

- The "energy" (and thus the dynamics) of the system is dictated by a Hamiltonian  $H_{[a,b]} = H^*_{[a,b]} \in \mathcal{A}_{[a,b]}$ .
- Locality: a particle at site  $x \in \mathbb{Z}$  should not interact too strongly with spatially distant  $y \in \mathbb{Z}$ .
- Nearest neighbor Hamiltonian:  $H_{\ell} \in \mathcal{A}_{[1,\ell]}$

$$H_{\ell} := \sum_{x=1}^{\ell-1} h_{x,x+1},$$

where  $h_{x,x+1}$  is a copy of  $h = h^* \in M_n(\mathbb{C}) \otimes M_n(\mathbb{C})$  acting on sites x, x + 1.

• We will study ground states. Pure ground states correspond to lowest eigenvalue eigenvectors  $H_{[1,\ell]} |\psi\rangle = \lambda |\psi\rangle$ .

# Example: Just Transverse Fields

- Qubit chain: each site is  $\mathcal{H}_x = \mathbb{C}^2$ , so Hilbert space is  $\mathcal{H}_{[1,\ell]} = \mathbb{C}^{2^\ell}$ .
- On-site orthonormal basis:  $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \in \mathbb{C}^2.$
- Hamiltonian:

$$H_{[1,\ell]} = \sum_{x=1}^{\ell} Z_x,$$

where  $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ . How to find ground state? Easy here, since  $[Z_x, Z_y] = 0$  so each term is simultaneously diagonalizable.

$$H_{[1,\ell]}|11...1\rangle = (Z_1 + Z_2 + \cdots + Z_\ell)|11...1\rangle = -\ell|11...1\rangle.$$

### Example: The Heisenberg Chain

- Qubit chain: each site is  $\mathcal{H}_x = \mathbb{C}^2$ , so Hilbert space is  $\mathcal{H}_{[1,\ell]} = \mathbb{C}^{2^\ell}$ .
- Hamiltonian:

$$H_{[1,\ell]} = \sum_{x=1}^{\ell-1} - \mathtt{SWAP}_{x,x+1},$$

where SWAP<sub>x,x+1</sub>  $|u v\rangle = |v u\rangle$ .

• To find ground states, we diagonalize  $H_{[1,\ell]}$ . Let's start with  $\ell=2$ ,  $\mathcal{H}_{[1,\ell]}=\mathbb{C}^4$ ,

$$\begin{split} \operatorname{SWAP}|00\rangle &= |00\rangle \\ \operatorname{SWAP}\left(|01\rangle + |10\rangle\right) &= |01\rangle + |10\rangle \\ \operatorname{SWAP}\left(|11\rangle\right) &= |11\rangle \\ \operatorname{SWAP}\left(|01\rangle - |10\rangle\right) &= -\left(|01\rangle - |10\rangle\right). \end{split}$$

### Example: The Heisenberg Chain

• In other words: in the basis  $\underbrace{|00\rangle, |10\rangle + |01\rangle, |11\rangle}_{sym}, \underbrace{|01\rangle - |10\rangle}_{antisym},$ 

$$\mathtt{SWAP} = P_{sym} - P_{antisym} = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & -1 \end{pmatrix}$$

So: -SWAP has pure ground states whose vectors are in the range of  $P_{sym}$ .

- Not hard to see that ground state vectors of  $H_{[1,\ell]}$  are the symmetric tensors  $\operatorname{Sym}^{\ell}(\mathbb{C}^2) \subseteq (\mathbb{C}^2)^{\otimes \ell}$ .
- The ground state vector for the interaction h = SWAP is just  $|01\rangle |10\rangle$ , which is *entangled*, i.e. cannot be expressed as 1 simple tensor.

# Symmetry and Symmetry Breaking

- Symmetry is often given as a unitary representation (cts. group homomorphism  $G \to \mathcal{B}(\mathcal{H}_{[1,\ell]})$ ) of a Lie group.
- Ex: the Heisenberg Chain is invariant under tensor rep of SU(2):

$$[U^{\otimes \ell}, H_{[1,\ell]}] = 0, \qquad \text{for all } U \in SU(2).$$

ullet Question: do the ground states of H also possess this symmetry?

# Symmetry and Symmetry Breaking

Simultaneous Block-Diagonalization Lemma: Let  $U: G \to \mathcal{B}(\mathcal{H}_{[1,\ell]})$  a rep of G and  $H = H^*$  such that

$$[U_g, H] = 0$$
 for all  $g \in G$ .

Then, for any eigenvector  $|\psi\rangle$  with eigenvalue  $\lambda$ ,  $U_g |\psi\rangle$  is also an eigenvector of H with eigenvalue  $\lambda$ . Proof:

$$H(U_g | \psi \rangle) = U_g H | \psi \rangle = U_g \lambda | \psi \rangle = \lambda (U_g | \psi \rangle).$$

Consequence: The ground state space is invariant under G.

• If every pure ground state  $|\psi\rangle$  is invariant under symmetry, i.e.  $U_g |\psi\rangle = |\psi\rangle$  for all  $g \in G$ , we say the symmetry is *unbroken*.

# Symmetry and Symmetry Breaking

- What else might happen?
- Ex: The ground state space  $\operatorname{Sym}^2(\mathbb{C}^2)$  of the 2-site Heisenberg chain is invariant under  $U \otimes U$ ,  $U \in SU(2)$ . But

$$U = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in SU(2)$$
 and

$$U \otimes U |00\rangle = (U |0\rangle) \otimes (U |0\rangle) = |11\rangle.$$

H is invariant under an SU(2) symmetry, but its ground states aren't. The SU(2) symmetry is broken.

- Let's introduce the phase diagram.
- Just like the water example, symmetry breaking can be used to distinguish phases.

# A phase diagram: O(n)-invariant spin chains

- On-site Hilbert space:  $\mathcal{H}_x = \mathbb{C}^n$ .
- The tensor representation of O(n), the orthogonal group, on  $\mathbb{C}^n \otimes \mathbb{C}^n$  is given by  $R \mapsto R \otimes R$ .
- MAT 261 (Lie Groups)  $\implies$  the irrep decomposition<sup>2</sup> is

$$\mathbb{C}^n \otimes \mathbb{C}^n \cong \underbrace{M_2 \oplus \mathbb{C} |\xi\rangle}_{sym} \oplus \underbrace{\bigwedge^2(\mathbb{C}^n)}_{antisym},$$

where 
$$|\xi\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} |ii\rangle$$
.

• We can then parameterize orthogonally invariant n.n. interactions, i.e. those with

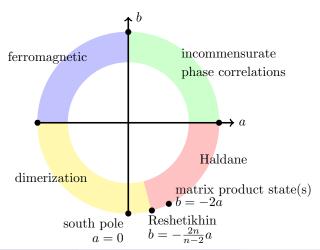
$$(R \otimes R)h_{x,x+1}(R^{-1} \otimes R^{-1}) = h_{x,x+1}.$$

 $<sup>^2</sup>$ ... except n=4.

### A phase diagram: O(n)-invariant spin chains

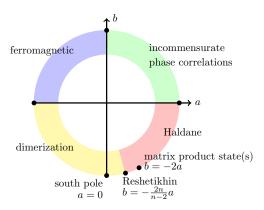
Up to a shift in ground state energy, every such interaction is given by

$$h = a \operatorname{SWAP} + b \left| \xi \right\rangle \left\langle \xi \right| + \mathbb{1}, \qquad a, b \in \mathbb{R}.$$



### Phases as equivalence classes

"Two model Hamiltonians  $H_0, H_1$  are in the same gapped phase if we can find a smooth path of gapped Hamiltonians connecting them."



How do we distinguish the Haldane phase from the dimerized phase?

### Dimerization at the south pole

- Dimerization is a type of symmetry breaking where translation invariance of H is broken by a pair of 2-periodic ground state.
- Physically, dimerization happens when Hamiltonian encourages strong entanglement + "monogamy of entanglement".
- This is what happens at the south pole point:  $Q = |\xi\rangle \langle \xi|$ , and

$$H_{[1,\ell]} = \sum_{x=1}^{\ell-1} -Q_{x,x+1}.$$

- $-Q_{x,x+1}$  rewards entanglement across sites x, x+1. But particles can only entangle strongly with one neighbor.
- Björnberg et.al. 2021 proved there are two 2-periodic ground states  $\omega_{\pm}$  such that:
  - Entanglement structure "alternates"
  - $\omega_+$  and  $\omega_-$  distinguishable by 2-site observable

#### The odd n case

- When n is odd, Tu et. al. 2008 showed the matrix product state (MPS) point has only one translation-invariant ground state.
- So: translation symmetry is unbroken in the Haldane phase, but broken in the dimerized phase.

#### Theorem (Bachmann, Mickalakis, Nachtergaele, Sims 2012)

Two Hamiltonians  $H_0$ ,  $H_1$  connected by a smooth path of uniformly gapped Hamiltonians must have the same number of pure ground states.

• When n is odd, these phases are distinct.

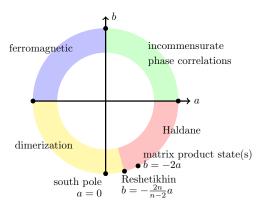
#### The even n case

- When n is even, the MPS point has a pair of 2-periodic ground states  $\omega_{\pm}$ . So dimension is not enough.
  - Will later see this is not dimerization. Physical mechanism is very different!

• Our lesson from water: studying symmetry properties can help us distinguish these phases. We have a natural G = O(n) symmetry.

### G-symmetric phases as equivalence classes

"Two G-symmetric Hamiltonians  $H_0$ ,  $H_1$  are in the same G-gapped phase<sup>3</sup> if we can find a smooth path of G-symmetric gapped Hamiltonians connecting them."



 $<sup>^3</sup>$ aka  $symmetry\mbox{-}protected\ topological\ (SPT)\ phase$ 

### G-symmetric phases as equivalence classes

- Let G be a compact Lie group (this includes finite groups). Let  $H_0, H_1$  be G-symmetric gapped Hamiltonians. Then let s = 0, 1 and define  $S(s) \subseteq A^*$  to be ground state space of  $H_s$ .
- Just like simultaneous block diagonalization: S(s) is invariant under G.
  - If every  $\omega \in \mathcal{S}(s)$  is invariant under G, i.e.  $g \cdot \omega = \omega$  for all  $g \in G$ , then G-symmetry is unbroken.
  - If there exists an  $\omega \in \mathcal{S}(s)$  where  $g \cdot \omega \neq \omega$ , then G-symmetry is broken.

#### Theorem (Bachmann, Nachtergaele 2014)

Two G-symmetric Hamiltonians  $H_0, H_1$  connected by a smooth path of uniformly gapped G-symmetric Hamiltonians have that  $S(0) \cong S(1)$  as G-representations.

# O(n)-to-SO(n) symmetry breaking

• It was proven in Björnberg 2021 that the south pole ground states  $\widetilde{\omega}_+, \widetilde{\omega}_-$  are both invariant under O(n): for all  $R \in O(n)$  and  $A_1 \otimes \cdots \otimes A_\ell \in \mathcal{A}_{[1,\ell]}$ ,

$$\widetilde{\omega}_{+}(RA_{1}R^{-1}\otimes\cdots\otimes RA_{\ell}R^{-1}) = \widetilde{\omega}_{+}(A_{1}\otimes\cdots\otimes A_{\ell})$$
$$\widetilde{\omega}_{-}(RA_{1}R^{-1}\otimes\cdots\otimes RA_{\ell}R^{-1}) = \widetilde{\omega}_{-}(A_{1}\otimes\cdots\otimes A_{\ell}).$$

# O(n)-to-SO(n) symmetry breaking

#### Theorem (Nachtergaele, R)

The MPS ground states  $\omega_+, \omega_-$  are invariant under SO(n), but swapped under O(n), i.e. for any  $R \in O(n)$  with det(R) = -1,

$$\omega_+(RA_1R^{-1}\otimes\cdots\otimes RA_\ell R^{-1})=\omega_-(A_1\otimes\cdots\otimes A_\ell).$$

Symmetry is broken! These two points support different irreps of O(n) and so these are different O(n)-symmetric phases.

#### Corollary

The south pole point and the MPS occupy distinct O(n) gapped phases.

### The MPS point: it ain't dimerization

- Two key features of dimerization:
  - Entanglement structure "alternates".
  - $\omega_{+}$  and  $\omega_{-}$  are distinguishable by a 2-site observable.
- It was believed that the even n MPS ground states were dimerized. But we found something surprising.

### The MPS point: it ain't dimerization

#### Theorem (Nachtergaele, R)

- $\bullet$   $\omega_{+}$  and  $\omega_{-}$  have identical entanglement structure.
- ②  $\omega_+ \neq \omega_-$ , but  $\omega_+$  and  $\omega_-$  are indistinguishable by any observable with support k < n/2, i.e. for any  $A_1 \otimes \cdots \otimes A_k \in \mathcal{A}_{[1,k]}$ ,

$$\omega_+(A_1\otimes\cdots\otimes A_k)=\omega_-(A_1\otimes\cdots\otimes A_k).$$

So: if  $n \ge 6$ , then every 2-local observable has identical expectation:

$$\omega_+(A_1 \otimes A_2) = \omega_-(A_1 \otimes A_2)$$
 for all  $A_1, A_2 \in M_n(\mathbb{C})$ .

Let's talk a little representation theory.

### Building the MPSs

The interaction  $h = SWAP - 2|\xi\rangle\langle\xi| + 1 \ge 0$  is frustration free, i.e.

$$\ker \sum_{x=1}^{\ell-1} h_{x,x+1} = \bigcap_{x=1}^{\ell-1} \ker h_{x,x+1} \neq \{0\}.$$

Finite chain ground states are given by MPSs.

# The rank-n Clifford algebra $C_n$

The rank-n Clifford algebra is the associative algebra generated by the operators  $\gamma_1, \ldots, \gamma_n$  subject to

$$\gamma_i \gamma_j + \gamma_j \gamma_i = 2\delta_{ij} \mathbb{1}, \qquad \gamma_i^* = \gamma_i, \qquad i, j = 1, \dots, n.$$

- Finite dimensional matrix algebra
- n even: center is just 1, so  $\mathcal{C}_n = M_{2^{n/2}}(\mathbb{C})$ .

#### Matrix Product States

When n even,  $\mathcal{B} = \mathcal{C}_n$ . Define MPS by  $\psi : \mathcal{B} \to (\mathbb{C}^n)^{\otimes \ell}$ 

$$\psi(B) = \sum_{i_1,\dots,i_\ell=1}^n \operatorname{Tr} \left( B \gamma_{i_\ell} \dots \gamma_{i_1} \right) | i_1,\dots,i_\ell \rangle.$$

• Let's get some intuition for n=4.

Let's explicitly compute the MPSs on  $\ell = 2$  sites for n = 4. Recall that since  $h = \text{SWAP} - 2|\xi\rangle\langle\xi| + 1$ , the ground state space is  $\mathcal{G}_2$ 

$$\mathcal{G}_2 = \bigwedge^2 \mathbb{C}^4 \oplus \mathbb{C} \ket{\xi} \bra{\xi}.$$

Clifford algebra basis  $\mathcal{B} = \mathcal{C}_4$ :

#### A useful lemma

#### Lemma

$$Tr\gamma_I\gamma_J=0$$
 whenever  $I\neq J$ .

#### Proof.

(Idea)

$$2\mathrm{Tr}\gamma_1=\mathrm{Tr}\gamma_1(\gamma_2\gamma_2+\gamma_2\gamma_2)=\mathrm{Tr}\gamma_2(\gamma_1\gamma_2+\gamma_2\gamma_1)=0.$$



Calculate some MPSs, with  $D = \text{Tr } \mathbb{1}$ .

$$\frac{1}{D}\psi(\mathbb{1}) = \frac{1}{D} \sum_{i_1, i_2} \operatorname{Tr} \left( \mathbb{1} \gamma_{i_2} \gamma_{i_1} \right) | i_1, i_2 \rangle$$

$$= \frac{1}{D}\psi(\gamma_1) = \frac{1}{D} \sum_{i_1, i_2} \operatorname{Tr} \left( \gamma_1 \gamma_{i_2} \gamma_{i_1} \right) | i_1, i_2 \rangle$$

$$= \frac{1}{D}\psi(\gamma_1 \gamma_2) = \frac{1}{D} \sum_{i_1, i_2} \operatorname{Tr} \left( \gamma_1 \gamma_2 \gamma_{i_2} \gamma_{i_1} \right) | i_1, i_2 \rangle$$

$$= \frac{1}{D}\psi(\gamma_0) = \frac{1}{D} \sum_{i_1, i_2} \operatorname{Tr} \left( \gamma_0 \gamma_{i_2} \gamma_{i_1} \right) | i_1, i_2 \rangle$$

### Finite chain ground states

Check: every  $\psi(B)$  is a ground state of H.

# Finite chains as SO(n) representations

• The Lie algebra  $\mathfrak{so}(n)$  embeds into the Clifford algebra in a natural way. Let  $L_{i,j} = |i\rangle \langle j| - |j\rangle \langle i|$ ,  $1 \leq i < j \leq n$ . Then the map  $\pi : L_{i,j} \mapsto \frac{1}{2} \gamma_i \gamma_j$  is a Lie algebra homomorphism  $\pi : \mathfrak{g} \to \mathcal{C}_n$ :

$$\frac{1}{4}[\gamma_i \gamma_j, \gamma_r \gamma_s] = \delta_{jr} \gamma_i \gamma_s - \delta_{ir} \gamma_j \gamma_s + \delta_{is} \gamma_j \gamma_r - \delta_{js} \gamma_i \gamma_r. \tag{1}$$

Since  $C_n \cong M_{2^{n/2}}(\mathbb{C})$ , this defines a Lie algebra representation on  $\mathbb{C}^{2^{n/2}}$  called the *spin* representation.

- Exponentiates to unitary representation  $\Pi: Spin(n) \to \mathcal{U}(\mathbb{C}^{2^{n/2}})$ , where we recall  $Spin(n)/\{\pm 1\} \cong SO(n)$ .
  - If  $\Pi(1) = \Pi(-1)$ , this descends to a representation of SO(n).
  - If  $\Pi(1) \neq \Pi(-1)$ , only get a *projective* representation of SO(n), i.e.

$$\Pi(w)\Pi(v) = \alpha(w,v)\Pi(wv), \qquad w,v \in SO(n),$$

where  $\alpha: SO(n) \times SO(n) \to U(1)$  is a phase.

# Finite chains as SO(n) representations

• Turns out, this is what we need to understand the symmetry of our MPSs:

$$w^{\otimes \ell}\psi(B) = \psi(\Pi(w)B\Pi(w)^{-1}), \qquad B \in \mathcal{B}, w \in SO(n),$$
 (2)

where we use that  $Spin(n)/\{\pm 1\} \cong SO(n)$ .

- This has a nice tensor network representation.
- Thermodynamic limiting states inherit this symmetry! So if we rotate the full chain,

$$\dots w \otimes w \otimes w \otimes w \otimes \dots$$

then  $\omega$  is invariant under this.

• This reaction to symmetry will shed light on the states and give yet another index.

# Finite chains as SO(n) representations

Define  $\psi_{\ell}: \mathcal{B} \to (\mathbb{C}^n)^{\otimes \ell}$ , and write  $\mathcal{G}_{\ell} = \{\psi_{\ell}(B): B \in \mathcal{B}\}.$ 

Theorem (Nachtergaele, R)

Let  $\ell \geq n$  and let  $V = \mathbb{C}^n$ . Then the representation  $\mathcal{G}_{\ell}$  of SO(n) decomposes as

$$\mathcal{G}_{\ell} = \begin{cases} \bigwedge^{1} V \oplus \bigwedge^{3} V \oplus \cdots \oplus \bigwedge^{n-1} V & \text{if } \ell \text{ is odd.} \\ \bigwedge^{0} V \oplus \bigwedge^{2} V \oplus \cdots \oplus \bigwedge^{n} V & \text{if } \ell \text{ is even.} \end{cases}$$

This is an irrep decomposition, except for  $\bigwedge^{n/2}V \cong U_+ \oplus U_-$ .

In some sense, the  $U_+$  and  $U_-$  are the only things distinguishing the two infinite volume ground states  $\omega_+$  and  $\omega_-$ , and they only appear when the chain is long enough  $\ell \geq n/2$ .

• This is a representation-theoretic symptom of the "short chain indistinguishability"!

#### Another index

- We can extract yet another invariant of G-gapped phases<sup>4</sup>.
- If we cut the lattice  $\mathbb{Z} = \mathbb{Z}_{(-\infty,0]} \cup \mathbb{Z}_{[1,\infty)}$ , we expose some degrees of freedom of the state.
- If we then rotate the half-chain, this gives another representation of Spin(n). This is a type of bulk-boundary correspondence.
- For our MPS, this is exactly  $\Pi!$
- We can assign a (Borel) group cohomology index  $h \in H^2(SO(n), U(1))$  to any projective rep.
  - Can show  $H^2(SO(n), U(1)) \cong \mathbb{Z}_2$ . There is only trivial and nontrivial projective.
- Chen-Gu-Liu-Wen 2013, Ogata 2020: SPT index h is invariant within a G-gapped phase.

<sup>&</sup>lt;sup>4</sup>aka SPT index

#### SPT indices

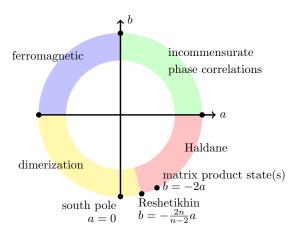
#### Theorem (Nachtergaele, $\mathbf{R}$ )

The south pole point has a pair of trivial SPT indices, and the MPS point has a pair of nontrivial SPT points.

#### Corollary

The south pole point and the MPS point occupy distinct SO(n) gapped phases.

Who knows what else is hiding in this O(n)-chain phase diagram?



Maybe **your** PhD!